Electrodynamics: Analysis of Electric Fields

This course is part of Electrodynamics Specialization

Instructor: Seungbum Hong

Skills you'll gain

  •   Engineering Calculations
  •   Basic Electrical Systems
  •   Differential Equations
  •   Engineering Analysis
  •   Scientific Visualization
  •   Electronic Components
  •   Calculus
  •   Physics
  •   Advanced Mathematics
  •   Mathematical Modeling
  •   Applied Mathematics
  •   Electrical Engineering
  • There are 5 modules in this course

    Learners will • Be able to apply symmetry and other tools to calculate the electric field. • Understand what susceptibility, polarization, and dipoles are. Additionally, students will learn to visualize Maxwell equations in order to apply the derived mathematics to other fields, such as heat/mass diffusion and meso-scale electromechanical properties, and to create patents that could lead to potential innovations in energy storage and harvesting. The approach taken in this course complements traditional approaches, covering a fairly complete treatment of the physics of electricity and magnetism, and adds Feynman’s unique and vital approach to grasping a picture of the physical universe. Furthermore, this course uniquely provides the link between the knowledge of electrodynamics and its practical applications to research in materials science, information technology, electrical engineering, chemistry, chemical engineering, energy storage, energy harvesting, and other materials related fields.

    The Electric Field in Various Circumstances (cont'd)

    Electrostatic Energy

    Introduction to Dielectrics

    Dielectrics (cont'd)

    Explore more from Electrical Engineering

    ©2025  ementorhub.com. All rights reserved