Machine Learning Foundations: A Case Study Approach

This course is part of Machine Learning Specialization

Instructors: Emily Fox +1 more

Instructor ratings

We asked all learners to give feedback on our instructors based on the quality of their teaching style.

Skills you'll gain

  •   Computer Vision
  •   Information Architecture
  •   Text Mining
  •   Image Analysis
  •   Artificial Intelligence
  •   Data Mining
  •   Regression Analysis
  •   Natural Language Processing
  •   Application Development
  •   Machine Learning
  •   Applied Machine Learning
  •   Classification And Regression Tree (CART)
  •   Deep Learning
  •   Predictive Modeling
  •   Supervised Learning
  •   Artificial Intelligence and Machine Learning (AI/ML)
  •   Feature Engineering
  • There are 7 modules in this course

    In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python.

    Regression: Predicting House Prices

    Classification: Analyzing Sentiment

    Clustering and Similarity: Retrieving Documents

    Recommending Products

    Deep Learning: Searching for Images

    Closing Remarks

    Explore more from Machine Learning

    ©2025  ementorhub.com. All rights reserved