Non-Equilibrium Applications of Statistical Thermodynamics

This course is part of Statistical Thermodynamics Specialization

Instructor: John W. Daily

What you'll learn

  •   Recognize the role of spectroscopic methods in determining the thermodynamic state of a system
  •   Utilize the Boltzmann Equation and the Chapman-Enskog solution to determine transport properties in dense gases and liquids
  •   Analyze the impact of reaction rates and rate constants on fluid/thermal applications such as combustion
  • Skills you'll gain

  •   Chemistry
  •   Engineering Calculations
  •   Chemical Engineering
  •   Simulation and Simulation Software
  •   Physics
  •   Differential Equations
  •   Thermal Management
  •   Applied Mathematics
  • There are 3 modules in this course

    The first is the transport behavior of ideal gases, with some discussion of transport in dense gases and liquids. It starts with simple estimates of the transport properties of an ideas gas. It then introduces the Boltzmann Equation and describes the Chapman-Enskog solution of that equation in order to obtain the transport properties. It closes with a discussion of practical sources of transport properties. Spectroscopic methods have become increasingly common as a way of determining the thermodynamic state of a system. Here we present the underlying concepts of the subject and explores how spectroscopy can be used to determine thermodynamic and flow properties. Chemical kinetics are important in a variety of fluid/thermal applications including combustion, air quality, fuel cells and material processing. Here we cover the basics of chemical kinetics, with a particular focus on combustion. It starts with some definitions, including reaction rate and reaction rate constant. It then explores methods for determining reaction rate constants. Next, systems of reactions, or reaction mechanisms, are explored, including the oxidation of hydrogen and hydrocarbon fuels. Finally, computational tools for carrying out kinetic calculations are explored.

    Spectroscopic Methods

    Chemical Kinetics and Combustion

    Explore more from Mechanical Engineering

    ©2025  ementorhub.com. All rights reserved