Analyzing Time Series and Sequential Data Specialization

Enhance your skills with SAS Visual Forecasting

Instructors: Danny Modlin +4 more

Skills you'll gain

  •   Bayesian Statistics
  •   Data Processing
  •   Regression Analysis
  •   Data Manipulation
  •   Statistical Methods
  •   SAS (Software)
  •   Data Transformation
  •   Automation
  •   Predictive Modeling
  •   Anomaly Detection
  •   Unsupervised Learning
  •   Applied Machine Learning
  • Specialization - 3 course series

    In this specialization’s project, learners will discover signal components in high value series then specify custom specifications appropriate for these series. These custom specifications are incorporated into a large scale forecasting system that learners create to automate the process of model generation, model selection and forecasting. Learners accommodate recurrent events and anomalies in the process generating the data to refine the automatic forecasting system .

    In this course you learn to perform motif analysis and implement analyses in the spectral or frequency domain. You also discover how distance measures work, implement applications, explore signal components, and create time series features. This course is appropriate for analysts with a quantitative background as well as domain experts who would like to augment their time-series tool box. Before taking this course, you should be comfortable with basic statistical concepts. You can gain this experience by completing the Statistics with SAS course. Familiarity with matrices and principal component analysis are also helpful but not required.

    This course is appropriate for analysts interested in augmenting their machine learning skills with analysis tools that are appropriate for assaying, modifying, modeling, forecasting, and managing data that consist of variables that are collected over time. The courses is primarily syntax based, so analysts taking this course need some familiarity with coding. Experience with an object-oriented language is helpful, as is familiarity with manipulating large tables.

    The course concludes by considering how forecasting precision can be improved by combining the strengths of the different approaches. The final lesson includes demonstrations on creating combined (or ensemble) and hybrid model forecasts. This course is appropriate for analysts interested in augmenting their machine learning skills with analysis tools that are appropriate for assaying, modifying, modeling, forecasting, and managing data that consist of variables that are collected over time. This course uses a variety of different software tools. Familiarity with Base SAS, SAS/ETS, SAS/STAT, and SAS Visual Forecasting, as well as open-source tools for sequential data handling and modeling, is helpful but not required. The lessons on Bayesian analysis and machine learning models assume some prior knowledge of these topics. One way that students can acquire this background is by completing these SAS Education courses: Bayesian Analyses Using SAS and Machine Learning Using SAS Viya.

    Building a Large-Scale, Automated Forecasting System

    Modeling Time Series and Sequential Data

    ©2025  ementorhub.com. All rights reserved